Section 5.3:
\#1-12: Create a function with lead coefficient 1 that satisfies the conditions.

$$
\begin{gathered}
x=3 i \quad x=-3 i \\
x-3 i=0 \quad x+3 i=0 \\
f(x)=(x-3 i)(x+3 i) \\
x \cdot x \times 3 i-3 i x-3 i .3 i \\
f(x)=x^{2}+3 x i-3 x i-9 i^{2} \\
f(x)=x^{2}-9 i^{2} \\
f(x)=x^{2}-9(-1) \\
f(x)=x^{2}+9
\end{gathered}
$$

3) degree 3 ; zeros -4 and $5 i$ and $-5 i$

$$
\begin{gathered}
x=-4 \quad x=5 i \quad x=-5 i \\
x+4=0 \quad x-5 i=0 \quad x+5 i=0 \\
f(x)=(x-5 i)(x+5 i)(x+4) \\
f(x)=\left(x^{2}+5 x i-5 x i-25 i^{2}\right)(x+4) \\
f(x)=\left(x^{2}-25 i^{2}\right)(x+4) \\
f(x)=\left(x^{2}+25(-1)(x+4)\right. \\
x^{2} \cdot x \quad x^{2} \cdot 4 \quad 25 \cdot x 25.4 \\
f(x)=x^{3}+4 x^{2}+25 x+100
\end{gathered}
$$

5) degree 3 ;eros 2 and $3 i$ - Also -Bi must be

$$
\begin{aligned}
& x=2 \\
& x-2=0 \quad x=3 i \quad x=-3 i \\
& x-3 i=0 \quad x+3 i=0 \\
& f(x)=(x-3 i)(x+3 i)(x-2) \\
& f(x)=\left(x^{2}+3 x i-3 x i-9 i^{2}\right)(x-2) \\
& \begin{array}{c}
9(-1) \\
+9 \\
\hline-2)
\end{array} \\
& f(x)=\left(x^{2}+9\right)(x-2) \\
& x^{2} \times \quad x^{2}-2 \quad 9 . x \quad 9 .-2 \\
& f(x)=x^{3}-2 x^{2}+9 x-18
\end{aligned}
$$

7) degree 4 ; zeros $2 i$, and $6 i$

$$
\begin{aligned}
& \quad \text { Also }-2 i,-6 i \quad x=6 i \quad x=-6 i \\
& x=2 i \quad x=-2 i \quad x-2 i=0 \quad x+2 i=0 \quad x-6 i=0 \quad x+6 i=0 \\
& x-2 i)=(x-2 i)(x+2 i)(x-6 i)(x+6 i) \\
& \left.f(x)=\left(x^{2}+2 x i-2 x i-4 i^{2}\right)\left(x^{2}+6 x i-6 x i-36 i\right)-36-1\right) \\
& f(x)=\left(x^{2}+4-4\right)\left(x^{2}+36\right) \\
& x^{2} \cdot x^{2} x^{2} \cdot 364 \cdot x^{2} 4.36 \\
& f(x)=x^{4}+36 x^{2}+4 x^{2}+144 \\
& f(x)=x^{4}+40 x^{2}+144
\end{aligned}
$$

Sorry for this one

$$
\begin{array}{cc}
x=3+i & x=3-i \\
x-3-i=0 & x-3+i=0 \\
f(x)=(x-3-i)(x-3+i) \\
x \cdot x \quad x \cdot-3 x \cdot i-3 x-3-3-3 i-i x-i-3 \\
-i \cdot 1 \\
f(x)=x^{2}-3 x+x i-3 x+9-3 i-x i+3 i-i^{2} \\
f(x)=x^{2}-3 x-3 x+9-(-1) \\
f(x)=x^{2}-6 x+10
\end{array}
$$

11) degree 2; zero 5 - i

$$
\begin{gathered}
x=5+i \quad x=5-i \\
x-5-i=0 \quad x-5+i=0 \\
f(x)=(x-5-i)(x-5+i) \\
x \cdot x x-5 x-i-5 \cdot x-5 \cdot-5-5 \cdot i \quad-i x-i \cdot 5-i \cdot 1 \\
f(x)=x^{2}-5 x+x i-5 x+25-5 i-x+5 i+i+1 \\
f(x)=x^{2}-5 x-5 x+25+1 \\
f(x)=x^{2}-10 x+26
\end{gathered}
$$

